
Kamphorst et al.
BMC Medical Informatics and Decision Making (2022) 22:49
https://doi.org/10.1186/s12911-022-01771-3

RESEARCH

Accurate training of the Cox proportional
hazards model on vertically‑partitioned data
while preserving privacy
Bart Kamphorst1*, Thomas Rooijakkers1, Thijs Veugen1,3, Matteo Cellamare2 and Daan Knoors2 

Abstract 

Background:  Analysing distributed medical data is challenging because of data sensitivity and various regulations to
access and combine data. Some privacy-preserving methods are known for analyzing horizontally-partitioned data,
where different organisations have similar data on disjoint sets of people. Technically more challenging is the case of
vertically-partitioned data, dealing with data on overlapping sets of people. We use an emerging technology based
on cryptographic techniques called secure multi-party computation (MPC), and apply it to perform privacy-preserv-
ing survival analysis on vertically-distributed data by means of the Cox proportional hazards (CPH) model. Both MPC
and CPH are explained.

Methods:  We use a Newton-Raphson solver to securely train the CPH model with MPC, jointly with all data holders,
without revealing any sensitive data. In order to securely compute the log-partial likelihood in each iteration, we run
into several technical challenges to preserve the efficiency and security of our solution. To tackle these technical chal-
lenges, we generalize a cryptographic protocol for securely computing the inverse of the Hessian matrix and develop
a new method for securely computing exponentiations. A theoretical complexity estimate is given to get insight into
the computational and communication effort that is needed.

Results:  Our secure solution is implemented in a setting with three different machines, each presenting a different
data holder, which can communicate through the internet. The MPyC platform is used for implementing this privacy-
preserving solution to obtain the CPH model. We test the accuracy and computation time of our methods on three
standard benchmark survival datasets. We identify future work to make our solution more efficient.

Conclusions:  Our secure solution is comparable with the standard, non-secure solver in terms of accuracy and
convergence speed. The computation time is considerably larger, although the theoretical complexity is still cubic
in the number of covariates and quadratic in the number of subjects. We conclude that this is a promising way of
performing parametric survival analysis on vertically-distributed medical data, while realising high level of security
and privacy.

Keywords:  Cox proportional hazard, Secure multi-party computation, Vertically-partitioned data

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
In biomedical research, linking data from multiple
sources can make analyses more robust and allows stud-
ies to take into account additional information. These
combined datasets might reveal patterns that the data in
isolation cannot. For example, after combining data from

Open Access

*Correspondence: bart.kamphorst@tno.nl
1 Cyber Security and Robustness, Netherlands Organisation for Applied
Scientific Research, The Hague, The Netherlands
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-022-01771-3&domain=pdf

Page 2 of 18Kamphorst et al. BMC Medical Informatics and Decision Making (2022) 22:49

cancer registries and general practices, additional infor-
mation of the patient can be included in survival studies,
e.g. comorbidities, alcohol consumption, or prescribed
drugs. By doing so, individuals’ clinical and demographic
characteristics can be taken into account when devel-
oping risk prediction models. A more individualized
approach to survival analysis will lead to more accurate
information for patients and clinicians to support their
decision-making [1]. Similarly, in another study, where
cancer registry data was combined with pharmaceutical
data, aspirin use after the diagnosis of colon cancer was
associated with increased overall survival [2]. Evidently,
combining data can lead to discoveries with profound
clinical implications.

Due to the sensitive nature of medical data, however,
it is challenging for organisations to share and combine
data. Legal frameworks like the General Data Protec-
tion Regulation1(GDPR) and the Health Insurance Port-
ability and Accountability Act2 (HIPAA) further restrict
the usage and exchange of medical data. This challenge
is holding back research and our ability to reflect on the
care and prevention of diseases. To overcome this chal-
lenge while respecting such regulation, new methods are
needed to enable research on distributed data while pro-
tecting patient sensitive information.

We distinguish two types of distributed data: hori-
zontally-partitioned and vertically-partitioned. When
data is horizontally-partitioned, each data holder stores
identical items but of different patients, e.g. national can-
cer registries. Advances in machine learning have led to
methods for federated learning, which are able to train
models on horizontally-distributed data. With federated
learning, statistical techniques are broken down in multi-
ple parts to run on distributed datasets. Only aggregated
statistics are shared between parties and the final result is
equivalent to the same analysis being performed on the
combined dataset. Federated learning is already used in
several clinical studies with data from multiple institu-
tions [3, 4]. In general, however, it is hard to determine
whether the statistics that are shared do not reveal more
than intended. In some cases these can be susceptible to
reconstruction attacks [5].

When data is vertically-partitioned, each data holder
manages different items but about the same sets of
patients. While federated learning might work in some
vertical cases, it is often a lot more challenging since
correlations between covariates are locally unknown.
Instead, another promising technology in the form of

secure multi-party computation (MPC) is able to deal
with this scenario while achieving high levels of security.
This technique is discussed in more detail below.

In this article we focus on the latter scenario and pro-
pose a privacy-preserving version of the Cox propor-
tional hazards (CPH) [6] model for vertically-partitioned
data. The primary audience of this paper are application-
driven researchers that are interested in privacy-pre-
serving survival analyses, such as clinical data scientists
and applied cryptologists. Together, these disciplines are
able to fully leverage the information that is hidden in
distributed, sensitive data sources, improve our under-
standing of complex diseases and therewith contribute to
improved treatment and well-being of patients. Although
the motivation of the presented research is clinical oncol-
ogy, the results generalize to many other types of bio-
medical, clinical studies.

Cox proportional hazards
The Cox proportional hazards model is a multivariate
regression model commonly used in medical research
for investigating the impact of one or more covariates
on the survival probabilities of subjects. It is a widely-
recognized tool in survival analysis of a particular group
of subjects I participating in an ‘experiment’, and at any
time they either (1) continue to ‘live’ in the experiment,
(2) ‘fail’ in the experiment, or (3) decide to no longer par-
ticipate in the experiment, and hence become ‘censored’.
The CPH model explicitly takes this last group of subjects
into account, as their data is valuable even if they did not
finish the experiment.

For a subject I ∈ I with p covariates ZI = (ZI
1, . . . ,Z

I
p) ,

the CPH model assumes that the hazard function
�(t|ZI ;β) can be expressed as

where �0(t) is the baseline hazard function that reflects
the underlying hazard for subjects with all covari-
ates equal to zero (also-called ‘reference group’) and
β = (β1, . . . ,βp) is the trained model vector that assigns
a weight to every covariate that corresponds to its impact
on the hazard of a subject.

An important aspect of Cox regression model is that
the relative risk of two events is constant over time. A
consequence of this property is that, if we write the log of
the hazard ratio for subject I to the baseline,

then the CPH model simplifies to a linear model for
the log of the hazard ratio. The main advantage of this

(1)�(t|ZI ;β) = �0(t) exp
[

β1Z
I
1 + β2Z

I
2 + · · · + βpZ

I
p

]

log

[

�I (t)

�0(t)

]

= β1Z
I
1 + β2Z

I
2 + · · · + βpZ

I
p,

1  https://​gdpr-​info.​eu.
2  https://​www.​govin​fo.​gov/​conte​nt/​pkg/​PLAW-​104pu​bl191/​pdf/​PLAW-​
104pu​bl191.​pdf.

https://gdpr-info.eu
https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/PLAW-104publ191.pdf
https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/PLAW-104publ191.pdf

Page 3 of 18Kamphorst et al. BMC Medical Informatics and Decision Making (2022) 22:49 	

family of regression models is that we can estimate the
parameters β without having to estimate �0(t) and hence
without assuming any particular parametric model for
the baseline hazard function; in particular, the model is
semi-parametric. In this article, we train the CPH model
using Breslow’s approximation of the partial likelihood
function [7].

Secure multi‑party computation
MPC is a cryptographic technique that enables multi-
ple parties, each having private inputs, to jointly evalu-
ate a function on their data, without revealing their data
to each other. Starting in 1982 with Yao [8], the field has
become more mature in the final decade with a so-called
share-compute-reveal approach. In this approach, the
secret data of every party is distributed in shares that
independently do not reveal any information about the
secret data, but can together be used to reconstruct the
secret data. These shares are distributed over the par-
ties, who are then able to perform computations with
the shares that correspond to the operations that one
would like to perform on the original secret data. When
the final, manipulated shares are combined, the parties
obtain the result of the computation as if it were per-
formed in the traditional, non-cryptographic way. In par-
ticular, it is possible to add, multiply and compare secret
values of different parties without revealing their data.

The field has further progressed by e.g. adding a pre-
processing phase for speed-up, leading to efficient MPC
platforms like SPDZ [9] and MASCOT [10]. We use
MPyC [11] for our implementations, a Python based
framework based on Shamir secret sharing [12]. MPyC
uses the semi-honest security model, meaning that par-
ties might be curious to learn sensitive data of other par-
ties, but are not able to derive this data as long as they
follow the rules of the cryptographic protocol. This
assumption resembles the healthcare setting where
the main goal of collaboration is to obtain new medical
insights.

More formally, we assume that at least half of the par-
ties do not collude with others (e.g. share information)
to deduce information. In order to protect the security
and integrity of the exchanged information, we assume
that the communication channels have been end-to-
end encrypted. In this setting, the only way for parties
to deduce each other’s sensitive information, is from (1)
their own input data and (2) the received output of the
computation, which from a security perspective is the
best we can achieve.

Related work
In 2016, Shi et al. [13] presented a solution for grid logis-
tic regression on horizontally-partitioned data. While

using MPC they ran into problems of securely invert-
ing the Hessian matrix and computing natural expo-
nentiation, but they were able to find workarounds. As
our situation is more complex, due to increased algo-
rithm complexity and different data partitioning, we had
to find different solutions for these challenges, which
are described in “Secure exponentiation protocol” and
“Matrix inverse protocol” sections respectively.

Several publications describe approaches for privacy-
preserving Cox regression. The works by Yu et al. [14]
and Lu et al. [15] consider horizontally-partitioned
data, whereas the recent work of Dai et al. [16] assumes
vertically-partitioned data. The work by Domadiya and
Rao [17] also considers vertically-partitioned healthcare
data, for which they present a privacy-preserving asso-
ciation rule mining technique.

Yu et al. preserve privacy by mapping the data to a
lower dimensional space [14]. They construct their aff-
ine, sparse mapping by solving a linear program that
optimizes the map in such a way that certain properties
are maintained (e.g. ordering imposed by survival time,
covariate selection) and thereby improve on earlier works
that use random mappings. The Cox model is publicly
trained on the lower-dimensional data and achieves near-
optimal performance.

Lu et al. design and implement a Web service, Web-
DISCO, for joint training of a Cox regression model [15].
Based on federated learning ideology, they achieve pri-
vacy-preservation by sharing aggregated information
only instead of individual data records. The obtained
model is mathematically equivalent to a model that is
trained directly on the joint data.

Dai et al. consider vertically-partitioned data and lev-
erage the alternating direction method of multipliers
(ADMM) [18] to directly train the model to its opti-
mum3 [16]. Note that the ADMM method itself is itera-
tive. The authors present their work in a client-server
setting where each client only transmits aggregated
intermediary results to the server in each iteration. The
server performs heavier computations than the client.
The subject-level data never leaves the client’s organiza-
tion, although all parties must know which subjects expe-
rienced an event (not the event time). The final model
is equivalent to the model that is trained directly on the
joint data.

Our work also assumes vertically-partitioned data,
but otherwise follows a different approach from Dai
et al. [16]. Firstly, instead of a direct approach, we lever-
age the Newton–Raphson method for iterative training

3  Source code of VERTICOX is available at https://​github.​com/​daiwe​nrui/​
VERTI​COX.

https://github.com/daiwenrui/VERTICOX
https://github.com/daiwenrui/VERTICOX

Page 4 of 18Kamphorst et al. BMC Medical Informatics and Decision Making (2022) 22:49

of the CPH model. Secondly, we perform all computa-
tions in the encrypted domain using secure multi-party
computation instead of computations in the plain where
privacy is preserved through aggregation. Aggregation
may provide a solid preservation of privacy; however, in
practice it is hard to make this precise and obtain math-
ematical guarantees on the security that is provided.

Our contributions are the following:

•	 A novel protocol for training a privacy-preserving
CPH model in the encrypted domain. The model is
trained in an iterative fashion using the Newton–
Raphson method for optimizing Breslow’s partial
likelihood function.

•	 Fundamental and widely-applicable protocols for
computing exponentiations in the secure domain.
That is, we securely compute ax for known a > 0 and
encrypted x.

•	 A new protocol for securely inverting a non-integer
matrix. We use a known approach for integer matri-
ces, and adjust it to our needs.

•	 A recursive approach for accurately computing the
gradients without using floating point arithmetic.

Privacy-preservation of input data during computation
is an important aspect of privacy-preserving machine
learning. However, preserving privacy during compu-
tation by means of aggregation or encryption does not
prevent a malicious user to deduce sensitive information
from the output of the computation. Although we did not
look into this aspect in our work, we do want to mention
some works that consider this aspect. O’Keefe et al. [19]
describe several methods for what they call “confiden-
tialising” the CPH output. For example, they suggest that
using a random 95% of the training data, robust esti-
mators and rounded or binned outputs can reduce the
information leakage of the CPH output while preserv-
ing the most important characteristics. Although some
of the techniques seem to improve privacy preservation,
one should note that no mathematical guarantees of the
effectiveness of the presented techniques are presented.

Another approach is persued by Nguyên and Hui [20]
and Nguyên [21], who design differentially private meth-
ods for generalized linear models and the CPH model.
Differential privacy is a mathematical framework ensur-
ing that an adversary is not able to deduce the exact pri-
vate information of a targeted subject from the trained
model [22]. This is achieved by adding noise to the data,
the penalty function or the trained model and usu-
ally result in an accuracy-privacy trade-off. The work
of Nguyên [21] does not consider distributed data. In
contrast, we consider distributed data and no noise is
added anywhere in the process. Both works may yield

interesting and partially orthogonal complements to our
work.

Methods
In this section, we train a CPH model on confidential,
vertically-partitioned data. We assume that (at least) two
parties know several complementary covariates of the
same set of subjects and wish to collaboratively train a
CPH model without ever revealing the personal data in
their possession to each other. Their goal is achieved by
means of MPC protocols.

This section is structured as follows. We first elaborate
on the distribution of data over the participating par-
ties. Subsequently, we introduce the partial likelihood of
CPH model and explain how it can be optimized using
a Newton–Raphson solver. Finally, we introduce the
privacy-preserving protocols that train the CPH model
in the encrypted domain, thereby greatly enhancing the
subjects’ privacy. Two generic building blocks, secure
exponentiation and secure matrix inverse, are described
in separate sections to highlight their independence of
the secure CPH protocol.

A list of symbols used throughout this section is pre-
sented in Table 1.

Participating parties and their data
The setting of this article is that m ≥ 2 parties wish to
jointly train a CPH model on their sensitive, vertically-
partitioned data. One of the parties provides the event
time XI , censoring information δI and possibly a subset
of covariates ZI

1, . . . ,Z
I
p′1

 . Every other party i provides
complementary covariates ZI

p′i−1+1
, . . . ,ZI

p′i
 , p′m = p for

the same subjects I. Together, the parties thus have a
richer understanding of every subject in their shared

Table 1  Overview of symbols

Symbol Definition

m Number of parties involved in the MPC protocol

N Secret-sharing modulus

n Number of subjects

I Set of all subjects

J Number of distinct event times

Dj Set of subjects that experience an event at time tj
dj Number of subjects that experience an event at time tj ; |Dj |

Rj Set of subjects at risk (alive and uncensored) at time tj
L(·) Log-likelihood function for CPH model

p Number of covariates

Z p-Dimensional vector of explanatory covariates

β p-Dimensional vector of model parameters

Z
I Realisation of the p-dimensional covariate vector Z for subject I

Page 5 of 18Kamphorst et al. BMC Medical Informatics and Decision Making (2022) 22:49 	

population. Note that this is different from a horizontal
partitioning, where every party has the same covariates
of different populations.

In our implementation we assume that, if there are only
two data-owning parties (e.g. there is no third party who
also contributes data to the computation), then there
exists a helper party who is trusted to the extend of truth-
fully evaluating the protocol and not colluding with oth-
ers. However, no sensitive data is revealed to the helper
and as such the required level of trust in the helper is
lower than what would be required for a (traditional)
trusted third party that obtains all the data. The addi-
tional helper participates in the protocol for security and
efficiency reasons only; all secure protocols can be imple-
mented in a suitable two-party MPC framework.

In practice, it is unlikely that the datasets of all players
contain precisely the same subjects. Moreover, it is not
quite certain that the subjects are ordered in the same
manner. It is possible to start from this setting and then
progress to a situation where all parties made a (secure)
selection such that both datasets contain the same sub-
jects and in the same order. Depending on the type of
identifiers used, this can be achieved in traditional ways,
or by using cryptographic protocols [23]. Instead, in
this article we assume that the intersecting and aligning
of databases has already been performed in such a pre-
processing phase, which allows us to focus on the secure
implementation of the CPH model.

Optimizing Breslow’s approximation
The estimation procedure for the CPH model uses a par-
tial likelihood approach that produces estimates for β
without involving �0(t) . The estimate depends on obser-
vations (XI , δI ,ZI) for every subject I that participates
in the experiment, where XI is the censored failure time
random variable, δI the failure-censor indicator and ZI
the set of covariates. In particular, δI = 1 if the subject
failed at time XI whereas δI = 0 if the subject got cen-
sored at time XI , presumably because the subject stopped

participating in the experiment while being alive.
We consider Breslow’s approximation [7] of the partial

likelihood, which allows for tied event times XI = XJ .
The approximation groups subjects according to their
censored event time, so let t1 ≤ t2 ≤ · · · ≤ tJ denote
the unique elements of the set {XI : δI = 1} . That is,
the first time that there were actual failures among all

subjects was t1 , the second such time was t2 , etc. We
refer to these times as the distinct event times. We define
Dj := {I : XI = tj , δ

I = 1} as the set of subjects that
experienced failure at time tj and let Rj := {I : XI ≥ tj}
denote the set of subjects that were at risk at time tj .
Finally, the number of actual failures at time tj is denoted
by dj := |Dj| . Breslow’s approximation of the partial like-
lihood is given by

Cox recommended to treat the partial likelihood as a
regular likelihood for making inferences about β , in the
presence of the nuisance parameter �0(·) . Therefore, let
us consider the log-partial likelihood

We aim to optimize the log-likelihood by applying the
iterative Newton–Raphson method;

Here, ∇l(β) =
(

∂l
∂β1

(β), . . . , ∂l
∂βp

(β)
)

 and
∇2l(β) =

(

∂2l
∂βr∂βs

(β)
)

r,s∈{1,...,p}
 are the gradient and the

Hessian matrix of l(β) , respectively. Their elements are
given by

and

for every r, s ∈ {1, . . . , p} . Alternative representations of
and methods for training CPH model are discussed by
[16, 24–26].

Secure CPH protocol
This section presents a secure version of the Newton–
Raphson solver that was described above for training the

(2)L(β) =

J
∏

j=1

∏

I∈Dj
eβ

T
Z
I

(

∑

I∈Rj
eβ

T
Z
I

)dj
.

(3)

l(β) = log(L(β))

=

J
�

j=1







βT
�

I∈Dj

Z
I − dj log





�

I∈Rj

eβ
T
Z
I











.

(4)βt+1 = βt −

(

∇2l(βt)

)−1
∇l(βt).

(5)
∂l

∂βr
(β) =

J
�

j=1







�

I∈Dj

ZI
r − dj

�

I∈Rj
ZI
r e

βT
Z
I

�

I∈Rj
eβ

T
Z
I







(6)∂2l

∂βr∂βs
(β) = −

J
�

j=1

dj







�

I∈Rj
ZI
r Z

I
s e

βT
Z
I

�

I∈Rj
eβ

T
Z
I

−

�

I∈Rj
ZI
r e

βT
Z
I

�

I∈Rj
eβ

T
Z
I

×

�

I∈Rj
ZI
s e

βT
Z
I

�

I∈Rj
eβ

T
Z
I







Page 6 of 18Kamphorst et al. BMC Medical Informatics and Decision Making (2022) 22:49

CPH model. As we elaborate on every step of the proto-
col, we pay special attention to the limitations of fixed-
point arithmetic and finite fields that motivated us into
designing the most interesting protocol steps.

Overview secure CPH protocol
We now provide the blueprint of our secure m-party
implementation of the CPH protocol. The secure pro-
tocol can be implemented in any linear secret-sharing
platform that tolerates a dishonest minority of up to t
passively corrupt parties (e.g. 0 ≤ t < m/2 ). The plain-
text modulus is denoted by N and secrets are denoted
by [.]. The statistical security parameter is denoted by
σ . We assume that the platform supports fixed-point
arithmetic rather than floating-point arithmetic. When
a secret value x is split into shared for distribution and
computation, we say that x is secret-shared; contrastingly,
information that is shared has not been encrypted unless
mentioned otherwise.

The idea is to secret-share the data ZI and perform
some one-time manipulations. From the secret-shared
data, we compute secret-shared model parameters βr ,
1 ≤ r ≤ p which are updated in each iteration according
to Eq. (4) without ever revealing them. Only when the
model has converged do we combine the shares to reveal
the desired output. This iterative process is broken down
into several steps, which we present in Protocol 1. Before
these steps are explained in more detail in the following
subsections, we evaluate the information that is shared
between the participating parties in unencrypted form.

Shared information
During the Newton–Raphson iterations, the vector β
converges to a final value. As intermediate values of β
might reveal some information about other parties’ input

data, the parties are allowed to see the converged vector
only. The MPC technology assures that, apart from the
actual number of iterations and the output of the model,
the only other information that is learned by the involved
parties is:

•	 The number of distinct event times, but not the
timestamp of these events.

•	 The number of events and censorings per distinct
event time index, but not the corresponding subjects.

•	 The total number of subjects.
•	 The number of covariates per party.
•	 Scaling factor per covariate (optional).

While this information could remain hidden, this would
require a lot more effort and computational overhead.
Because this information does not appear to reveal any
sensitive information with respect to the individual sub-
jects, we assume that this can be revealed to the involved
parties.

Data set‑up
After secret-sharing the data ZI , we perform some one-
time manipulations that rely on the data distribution. In
particular, we sort the rows of the joint, secret-shared
database such that they are sorted in ascending order of
event time and exchange some metadata. This is facili-
tated by the fact that one of the parties, say party 1, pro-
vides both the event time period XI and the censoring
information δI of every subject I.

Securely sorting the rows of the joint database such
that they are sorted in ascending order of event time cor-
responds to multiplication of the joint database by a suit-
able permutation matrix. Party 1 can locally produce the
permutation matrix that corresponds to this change from
the locally-available event times and secret-share it. The
parties can then jointly perform the permutation.

Additionally, party 1 shares some metadata in unen-
crypted form. First, party 1 shares a list that, for every
distinct event time, indicates the indices of the rows that
correspond to subjects that experienced an event. Sec-
ond, party 1 shares a list that, for every distinct event
time, indicates the indices of the lists that correspond to
subjects at risk. After this phase, all parties are able to
select those rows that correspond to patients in Dj and
Rj without actually knowing which patients they selected
or the attributes of these patients. The information now
shared also reveals di.

The reason for sharing this information is that it is
non-sensitive, yet sharing this information significantly
simplifies evaluation of the non-trivial summations in
expressions (5) and (6).

Page 7 of 18Kamphorst et al. BMC Medical Informatics and Decision Making (2022) 22:49 	

Secure inner products
The first step of Protocol 1 (in line 3) is to securely com-
pute the inner products [βT

Z
I] . Since secret sharing

doesn’t allow for local multiplication of privately known
numbers (the ZI

r ), the obvious solution is that each party
k generates secret sharings of ZI

r for each subject I and
every covariate r known to party k. Then the inner prod-
uct [βT

Z
I] can be computed by p secure multiplications,

and m− 1 (local) additions. Note that secure multipli-
cations require a round of communication between the
parties.

Secure exponentiations
The second step of Protocol 1 (in line 4) is to compute
[ex] , given the encrypted number [x] (where [x] e.g.
resembles the secure inner products computed before).
The sub-protocol for doing this is described in “Secure
exponentiation protocol’ section as it is of independent
interest. At this point we only note that the sub-protocol
suffers from the fixed-point representation of numbers,
implying that ex only fits within the finite field for a very
limited range of x.

Assume that secure numbers are represented with
32 bits and a fixed-point encoding that uses the first 16
bits to encode the sign bit and integer part. Then the
range of secure numbers is [−215, 215] with a granularity
of 2−16 . For ex to fit in this range, we can only allow for
x ∈ [−12, 12] . Our implementation securely truncates [x]
such that it falls within this range. The feasible domain
can be enlarged by using more bits in the representa-
tion of secure numbers; however, this will only margin-
ally increase the feasible domain due to the exponential
growth whereas the computation time of the protocol is
significantly increased. As such, we designed the remain-
ing steps of the protocol to cope with the limited feasible
domain of the secure exponentiation.

Secure gradient and Hessian matrix
The expressions for the gradient and Hessian matrix,
expressions (5) and (6), involve many components that
are non-trivial to evaluate in the encrypted domain. We
present our discussion in terms of the gradient since
the computation of the Hessian can be done in a similar
fashion.

Due to the data set-up phase, all parties know which
rows in the joint secret-shared database correspond to Dj
and Rj for all j ∈ {1, . . . , J } . Additionally, the multiplica-
tion by dj can be performed by every party locally as their
values have also been exchanged. We thus need to show

how
∑

I∈Rj
ZI
r exp[β

T
Z
I]

∑

I∈Rj
exp[βT

Z
I]

 can be evaluated securely and

accurately. This is especially challenging due to the lim-
ited feasible domain of the secure exponentiations that
was discussed before. We will elaborate on our approach
to evaluate the fraction accurately.

For the remainder of this section, without loss of
generality, we assume that the subjects I, which are
sorted according to ascending event time, are num-
bered from 1 to n. Let rj denote the number of sub-
jects at risk at the j-th distinct event time. Then, by
choice of our ordering and numbering, we find that
Rj = {n− rj + 1, n− rj + 2, . . . , n} . We denote

and are thus primarily interested in the values of Gk
r for

k = n− rj + 1 , j = 1, . . . , J  , as these Gk
r correspond to

the
∑

I∈Rj
ZI
r exp[β

T
Z
I]

∑

I∈Rj
exp[βT

Z
I]

.

Due to the limited feasible domain of the secure expo-
nentiation and the corresponding truncation, it is highly
likely that direct, secure evaluations of expression (7)
result in inaccurate values. Fortunately, one may see that
Gk
r is a weighted average of Zi

r , meaning that it is the ratio
between weights that impacts the final value rather than
the absolute weights. In particular, one may write

where ηki ∈ (0, 1] , to see that we only truly care about the
ratio between the various exponentiated inner products.
This seems to solve the challenge posed by the limited
range of exponentiation; one could directly compute the
Gk
r from the approximated ηki for all relevant k. However,

Gk
r needs to be computed for k = n− rj + 1 , j = 1, . . . , J

and the j-th evaluation requires the computation of rj
values of ηki  . As we expect J = O(n) this implies secure
evaluation of roughly 12n

2 reciprocals per iteration of the
Newton–Raphson procedure, which is expensive. This
observation motivated the following alternative, recur-
sive evaluation of relation (8):

(7)Gk
r :=

Zk
r e

βT ·Zk
+ · · · + Zn

r e
βT ·Zn

eβ
T ·Zk

+ · · · + eβ
T ·Zn

(8)

Gk
r =

Zk
r

1+ eβ
T ·Zk+1−βT ·Zk

+ · · · + eβ
T ·Zn−βT ·Zk

+ · · ·+

Zn
r

eβ
T ·Zk−βT ·Zn

+ · · · + eβ
T ·Zn−1−βT ·Zn

+ 1

=: ηkkZ
k
r + · · · + ηknZ

n
r ,

(9)

Gn
r = Zn

r

Gk−1
r = Gk

r + θk−1 · (Zk−1
r − Gk

r), k = 2, . . . , n

Page 8 of 18Kamphorst et al. BMC Medical Informatics and Decision Making (2022) 22:49

where

is equal to ηkk above and assumes values in (0, 1). This
recursive approach requires n secure evaluations of
a reciprocal per iteration of the Newton–Raphson
procedure.

In the final expressions it becomes clear that there is
no need to compute ex with high accuracy when x is not
close to 0. If x is negative and large, then the contribution
of that term to θ is negligible and can be approximated
with zero. If x is positive and large, then the contribution
of that term to θ indicates that θ will be close to zero. The
fact that θ is close to zero may be more important than
how close it is exactly (e.g. 10−5 or 10−10).

The described protocol for computing Gk
r is iterative,

meaning that inaccuracies in an early stage may propa-
gate throughout all later iterations. However, our experi-
ments show that the recursive approach yields sufficiently
accurate results for our purposes.

Updating the model parameters
The model parameters β are updated as in Eq. (4). The
main challenge is, given the scaled Hessian matrix and
gradient vector, to compute the inverse of the p× p
Hessian matrix H in the encrypted domain. Once we
have computed the inverse Hessian matrix, the remain-
ing matrix vector product is simply a number of secure
inner products. The matrix inverse protocol is described
in “Matrix inverse protocol” section.

Stopping criterion
The protocol keeps iterating until one of two conditions is
met: it either completed a pre-defined maximum number
of iterations or the model has converged. We say that the
model is converged if all elements of the absolute model
update |βt+1 − βt | are smaller than a pre-defined con-
vergence threshold τ . Since the absolute model update is
secret-shared, we securely compute the binary output of
maxr |β

t+1
r − βt

r | < τ and reveal this binary output to the
participating parties.

Secure exponentiation protocol
In this section we describe a protocol for computing [ax]
from a public base a ∈ R≥0 and secret exponent [x]. In
particular, this protocol can be used for evaluating [ex] .
We also present a wrapper for the secure exponentia-
tion in case x cannot be guaranteed to be in the feasible
domain.

(10)

θk−1 :=
1

1+ eβ
T ·Zk−βT ·Zk−1

+ · · · + eβ
T ·Zn−βT ·Zk−1

The exponent x should be in a range such that ax
can be represented in the finite field. As such, it is
assumed that xL, xU ∈ R are provided such that ex can
be meaningfully represented in the finite field for all
x ∈ [xL, xU] . For example, if a = 2 and secure numbers
are represented with 32 bits, encoded as unsigned fixed
points with 20 integral bits and 12 fractional bits, then
−12 ≤ xL < xU ≤ 20.

The solution that we describe implements separate
protocols for exponentiation by an integer exponent and
exponentiation by a non-integer exponent. The former
protocol is exact, but is not applicable to non-integer
exponents. It is complemented by the latter protocol,
which is more broadly applicable at the costs of accu-
racy. The higher-level protocol for securely evaluating
exponentiation splits the provided exponent into an inte-
ger and non-integer part and then deduces the intended
result from these two protocols. The outline of the proto-
col is presented in Protocol 2.

We will show that the relative error of the approxima-
tion for az can be quantified and improved by comput-
ing a higher-order approximation polynomial. Since the
final approximation for ax is the product of an exact term
and term with bounded relative error, it follows that the
approximation for ax of this protocol also has bounded
relative error and can be tailored to the specific needs.

The above outline is identical to the approach of This-
sen [27, Chapter 5]; however, our implementation differs
from theirs on several points. Firstly, we use probabilis-
tic truncation opposed to their more expensive deter-
ministic truncation. This choice relates closely to the
second difference: we utilize a MacLaurin series in our
approximation of [az] , Thissen uses the polynomial p1045
from [28] instead. The MacLaurin series is more flexible
in the sense that it works for negative and positive z and
it can be easily computed for any base b. Instead, p1045
only provides guarantees on the relative error for posi-
tive z and requires b = 2 . This inflexibility is justified by
the fact that the same accuracy can be achieved with a

Page 9 of 18Kamphorst et al. BMC Medical Informatics and Decision Making (2022) 22:49 	

lower-degree polynomial approximation. Thirdly, This-
sen’s protocol for computing [2y] is based on a bit decom-
position of [y], whereas our protocol depends on additive
blinding.

We now discuss the elements of our secure exponentia-
tion in more detail.

Reduce input space
It suffices to have a protocol that computes [ax] from an
integer base a and a secret-shared fixed point [x]. To see
this, note that one can write bx = ax loga b . As such, we
can just reformulate our problem of computing [bx] to
computing [ax̃] for any integer base a.

Negative exponents are bothersome to work with,
especially in a finite field. Instead, it is more convenient
to work only with positive exponents x. To this end we
could first securely compute the sign of x and denote it by
[δ] , where δ = (x ≥ 0) . That is, δ = 1 if x is non-negative
and δ = 0 if x is negative. Then we compute the exponen-
tiation of the positive value y = x − (1− δ)xL . Finally, we
compute ex = δ · ey + (1− δ) · ey · exL . This solution dou-
bles the range of acceptable x for a given modulus N at
the cost of a single secure comparison.

Split exponent
Splitting the exponent into an integer part and a non-
integer part can be done in various ways. Rounding [x]
to the nearest integer requires an intensive secure com-
parison protocol, but we can use probabilistic truncation
(see [29, Protocol 4.32], or [30, Protocol 2]) instead to
avoid the secure comparison at a small loss of accuracy. In
particular, if we let [y] denote the result of a probabilistic
truncation of [x] then y can both be the nearest smaller or
the nearest larger integer to x. The non-integral part [z] is
then computed as [x] − [y] and assumes a value in (−1, 1).

Integer exponent
Assume we have m parties having an additive secret-sharing
of x modulo N, and we would like to compute [ay] , where a
is a known integer and [y] is a secret-shared integer.

The outline of the subprotocol is to additively blind
[y] with [

∑

m ri] , compute the exponentiation with the
resulting public value ỹ and correct the final result for
blinding. Here, the ri are random numbers with σ bits
more than y. In order to produce an efficient solution
we restrict the length of y such that m · y · 2σ < N  ; that
is, the blinded version of y should fit in the finite field.
The subprotocol is presented in Protocol 3. Note that the
value of ỹ obtained in step 3 has not been reduced since
0 ≤ ỹ = −y+

∑m
i=1 ri ≤ m · y · 2σ < N .

Non‑integer exponent
We just described a protocol for computing [ay] for inte-
ger [y]. The standing challenge is to perform a secure
exponentiation with a secret floating-point exponent z.
We approach this challenge with a polynomial approxi-
mation of exponentiation; in particular, we base our
approach on the MacLaurin series of es . This approach is
justified by a short derivation that is presented in Addi-
tional file 1.

The subprotocol for exponentiation with a non-integer
exponent z is presented in Protocol 4. In the protocol, the
log-function denotes the natural logarithm. For a given
base a and a given range [−Z,Z] that contains z, the rela-
tive error of the approximation can be made arbitrarily
small by choosing an appropriate number k̃ of terms. For
our purposes, k̃ typically assumes a value close to 7. Note
that there is no need for expensive secure reciprocals as
the reciprocals 1/k! can be computed in the plain.

Wrapper for truncation
With some extra work and three secure comparisons in
total, the earlier described method for reducing the input
space to x ≥ 0 can be extended to also accept x outside
the interval [xL, xU] and return [y], where

Page 10 of 18Kamphorst et al. BMC Medical Informatics and Decision Making (2022) 22:49

The number of secure comparisons can some-
times be reduced to two. For example, if xL and
xU satisfy xL ≥ −xU then we may translate x to
x̃ = x − (xU + xL)/2 , which needs to be truncated to the
interval [−(xU − xL)/2, (xU − xL)/2] , which is symmetric
around zero. One secure comparison reduces this case
to truncating |x̃| to [0, (xU − xL)/2] and the second com-
parison is required to perform the actual truncation. The
results of the secure comparisons can later be reused in
order to obtain the desired result.

Matrix inverse protocol
In this section we explain the idea of Blom et al. [31] for
a matrix inversion circuit that is suitable for translation
to the encrypted domain (garbled circuits, homomor-
phic encryption, or secret sharing), yielding an efficient
solution for secure matrix inversion. Since this solution
is already implemented in the MPyC library for secret-
shared integers, we tweak the implementation to accept
secret-shared fixed points.

We first describe the solution by Blom et al. and then
discuss the changes that we made such that the protocol
accepts fixed-point numbers.

Matrix inverse for integers
We have a d-by-d (encrypted) integer matrix A and
would like to compute its inverse (if it exists). The ele-
ments of the inverse will be rational numbers, but one
can show that both the determinant detA and the adju-
gate adjA = A

−1 detA will be integer-valued, which gives
a common denominator ( detA ) for the rational elements
of A−1 . Since detA and adjA are integer-valued, these
can be separately computed, without rounding errors
and within a finite field, which is very convenient in the
encrypted domain.

(11)y =







exU if x > xU ,
ex if xL ≤ x ≤ xU ,
0 if x < xL.

The approach of Blom et al. [31] is described in Proto-
col 5. Steps 1 and 3 are explained in more detail in Addi-
tional file 2. In case the determinant of RA in step 4 is
zero, we know that matrix A is singular and stop the pro-
tocol. One should note that the term [A−1] in step 3 is the
inverse of A over Zq , where q is the modulus of the finite
field. The inverse of A over R is given by (detA)−1adjA ,
where (detA)−1 is the inverse of detA in R . Blom et al.
actually reveal both [adjA] and [detA] such that the recip-
rocal of the determinant can be computed in the clear.
For every application, one should verify that disclosing
this information for gaining efficiency is acceptable.

In order to be able to properly represent the elements of
the matrix inverse, the finite field should be large enough.
Let α denote the maximal absolute value of the elements
of A . One can show that | detA| ≤ dd/2αd and also derive
that the maximal absolute value of the elements of adjA is
upper bounded by (d − 1)(d−1)/2αd−1 [31]. In conclusion,
computing the matrix inverse in this fashion increases
the magnitude of elements from α to roughly dd/2αd . The
modulus of the finite field must be chosen appropriately.
Since all shares are now much larger, this blow-up puts a
lot of strain on the devices’ memory. We therefore opt to
convert the secret-shared elements to a larger field just
before computing the matrix inverse, and convert them
back to a smaller field afterwards.

Remarks about the MPyC implementation
Two important aspects need to be taken into considera-
tion when using the MPyC matrix inverse: conversions
between secure types and secure computation of the
reciprocal of the determinant.

First, the MPyC implementation assumes that input is
delivered in the MPyC SecFld format. In particular, we
require secure conversions from SecInt (for integers)
or SecFxp (for fixed points) to the required format.
After constructing the matrix inverse, we need to per-
form another conversion in order to continue with the
format that we started with.

The current implementation of the MPyC convert,
starting with a secure number of type SecFld, involves a
secure comparison and a secure modular reduction. The
amount of communication required for both operations
grows linearly in the number of bits k that is used to rep-
resent the secure number. In our case k ≈ log2(d

d/2αd)
grows fast with increasing matrix dimensions.

Second, as noted before, Blom et al. choose to dis-
close the determinant of A . However, one might not
(always) wish to disclose this information, hence we
opted to implement a variant where this information is
kept secret. Unfortunately the secure computation of

Page 11 of 18Kamphorst et al. BMC Medical Informatics and Decision Making (2022) 22:49 	

the reciprocal of detA , particularly in the enlarged finite
field, can be quite expensive.

Matrix inverse for fixed points
In the previous section we discussed several points
of attention in the implementation of MPyC’s matrix
inverse. Several additional changes need to be made in
order to make the MPyC matrix inverse operational with
numbers that are represented as fixed points: (1) the
fixed-point numbers need to be scaled to integers and (2)
this scaling needs to be corrected for later.

Assume that the chosen fixed-point representa-
tion reserves f bits for the fractional part of the num-
ber x. Then 2f x is an integer. One can scale all entries
in the fixed-point-valued matrix to obtain an integer-
valued matrix 2f A . If we compute the matrix inverse of
the scaled, integer matrix 2f A , then we obtain 2−f

A
−1 .

Therefore, in order to correct the initial scaling, we only
need to correct the final result by multiplying all elements
of the inverse with 2f (equivalently: scale the reciprocal of
the determinant by factor 2f  ). The resulting protocol is
described in Protocol 6.

Most steps in Protocol 6 are efficient in the sense that
several operations are performed in the plaintext domain
rather than the encrypted domain; however, the conver-
sion steps and the computation of the reciprocal of detA
are quite expensive. Both components scale as a function
of the number of bits k ≈ log2(d

d/2αd) that are used to
represent the secure numbers, which we already noted to
grow fast in the dimensions of the matrix A.

Theoretical performance
This section considers the theoretical performance of the
various parts of the protocol. In particular, we present the
theoretical scalability of all components in Table 2. The

table gives an indication of the dependence of the per-
formance on the number of subjects n and the number
of covariates p. Some subprotocols also depend on the
maximum bit-length of plaintext encodings; this depend-
ency is not reflected in Table 2 for clarity. The next para-
graphs outline the origin of the dominant terms in every
subprotocol.

The preprocessing consists out of a matrix-matrix
product for sorting of the secret-shared data ( n2 invoca-
tions), where we leverage the efficient inner products in
MPyC, and a pre-computation of all np(p+ 1)/2 cross-
products of covariates ( ZI

rZ
I
s  ). The significant contri-

bution of the secure exponentiation protocol is mainly
caused by the fact that it is performed for n(n− 1)/2
exponents per iteration. The number of invocations and
communication rounds grows linearly in the precision
parameter k̃.

The gradient and Hessian are computed from the θk
[Eq. (10)]. Since Eq. (10) is recursive, this requires the
computation of n secure reciprocals in parallel. The
Hessian matrix can then be computed by performing
O(Jp(p+ 1)/2) secure multiplications in parallel. Sub-
sequently, the Hessian matrix needs to be inverted. This
subprotocol requires two conversions between secure
types in the MPyC library: from SecFxp to SecFld
and vice versa. The conversion protocol is dominated by
a secure modular reduction, which scales linearly in the
bit-length of the modulus of the enlarged secure field:
O(p log p) invocations and O(log p) rounds. Converting
all elements of the matrix in parallel results in the stated
complexity.

Table 2  Big-O complexity of our (sub)protocols, implemented in
the MPyC framework

Costs are per iteration unless stated otherwise. An invocation is the amount
of data send by each party in a multiplication protocol, which also highly
correlates with the number of operations that need to be performed locally by
each player. The number of communication rounds is estimated for an ideal
implementation—our implementation may scale worse than this depending
on the efficiency of the underlying communication logic. Note that the number
of distinct event times J is bounded by the number of subjects n. In our
experiments, they are of the same order of magnitude

Building block Invocations Rounds

Pre-processing (one-time) O(n2 + np2) O(1)

Secure exponentiation O(k̃n2) O(k̃)

Computing G and H O(n+ Jp2) O(n)

Secure matrix inverse O(p3 log p) O(log p)

Update β O(p) O(1)

Checking convergence
criterion

O(p) O(1)

Secure CPH O(k̃n2 + np2 + p3 log p) O(k̃ + n+ log p)

Page 12 of 18Kamphorst et al. BMC Medical Informatics and Decision Making (2022) 22:49

Finally, β is updated by performing a matrix-vector
multiplication after which the convergence criterion is
verified at the cost of O(p) secure comparisons.

In conclusion, if R is the number of Newton–Raph-
son iterations, then the theoretical performance is
dominated by O(R(k̃n2 + np2 + p3 log p)) invocations
in O(R(n+ log p)) rounds. Note that MPyC is not yet
optimized for reducing the number of communication
rounds and it is very well possible that the current imple-
mentation of the secure CPH protocol initiates many
more rounds than optimal.

Results and discussion
To gain insights in the practical scalability of the imple-
mented protocol, we ran several experiments. The main
purpose of these experiments was to determine the accu-
racy, complexity and scalability of the implementation.
Naturally, the accuracy of the privacy-preserving CPH
implementation should be close to that of the baseline
implementations in order to be useful. However, the
privacy-preserving implementation is significantly more
demanding in terms of computational power, storage
and network communication and therefore the relative
performance of the protocol should be tested as well.
In particular, we wonder how the training times grow if
the input data sets increase in size (considering both the
number of covariates as well as the number of records)?
We remark that the gathered training times unavoidably
depend on the power of the CPUs being used; the abso-
lute data points should therefore be solely used to obtain
an intuition on the performance of the (sub)protocols.

MPC platform
Our solution can be implemented in any linear secret
sharing platform. We implemented the solution using the
MPyC [11] platform, which bases its protocols on Shamir
secret sharing [12] and pseudorandom secret sharing. A
benefit of the MPyC platform facilitates asynchronous
evaluation of MPC protocols, implying that a party can
perform local computations (e.g. generate random-
ness) while she is waiting for other players’ information.
Another main reason for using MPyC is its communi-
cation-efficient protocol for performing inner products,
which is a key operation in our protocol for training the
CPH model.

Shamir secret sharing and therefore MPyC requires at
least m ≥ 3 computing parties for security reasons. As
such, if there are in fact only two parties that provide
data for training the CPH model, we assume that a semi-
trusted third party (helper) joins the computation such
that we meet the security requirements. The helper is not
allowed to learn any sensitive values, including model
parameters and explanatory covariates. In fact, the helper

does not even need to learn the final outcome of the
model. We do assume that the helper is semi-honest and
that he does not collude with other parties.

Security analysis
Let’s assume two parties aim to jointly compute a secure
CPH on their vertically-partitioned data. For example a
study aimed at measuring the impact of drugs registered
by an insurance agency with respect to the vital status
and follow-up time that is recorded in a disease specific
registry. As in any MPC platform, we assume that each
pair of parties has an authenticated and confidential
communication channel to securely exchange messages.
This avoids eavesdroppers to learn any sensitive informa-
tion on the parties’ inputs.

The MPyC framework assumes that (the consortium
of at least three) parties are honest-but-curious and that
they do not collude. This means that every party will
adhere to the protocol and might only try to learn from
the information that it has received during the execu-
tion of the protocol. The information that is received is
not supposed to be shared with other parties (colluding).
If a stronger security model, e.g. with cheater detection,
or a scenario that allows for just two parties, e.g. without
semi-trusted helper party, is desired, then another frame-
work must be used and the protocols described in this
document will have to be re-evaluated. However, in most
application scenarios this framework is considered to be
adequate, as each respective data holder is putting their
own data and reputation on the line, which would make
it unlikely for them to deviate from the protocol.

Our protocols are built from default computation steps
that have been implemented within the MPyC platform,
and therefore inherit its security properties. The only
exceptions are our new secure exponentiation protocol,
and the matrix inverse protocol, which both reveal inter-
mediate values. The first one reveals ỹ = −y+

∑m
i=1 ri

(see step 3 of Protocol 3), where the sensitive value y is
statistically blinded by the ri , because they have σ more
bits than y. The second one reveals the matrix RA (see
step 2 of Protocol 5), which has been proven secure in
[31].

Experiment
The experimental data were gathered in a distributed set-
ting. Three machines were installed on three different
(geographical) locations, and the interactive protocol was
executed with reliable, high-throughput communication
channels over the internet. All parties had a similar set-
up, the implementation was ran within a Docker environ-
ment on Ubuntu 18.04 LTS. Every machine was equipped
with 16 GBs of RAM and four virtual cores.

Page 13 of 18Kamphorst et al. BMC Medical Informatics and Decision Making (2022) 22:49 	

Accuracy
We ran experiments to validate the accuracy of our
secure solution for training the CPH model. We used
three data sets and benchmarked those on three different
implementations:

•	 Built-in R implementation [32] (also refered to as
‘lib’);

•	 Plaintext Newton R implementation (also refered to
as ‘newton’), and;

•	 Secure Newton implementation (also refered to as
‘mpc’).

Note that the built-in R implementation uses an alter-
native, more optimized (but also more complex) solver
resulting in a slightly modified model. It is therefore quite
possible that this optimizer converges in less iterations.
Furthermore, it uses the Efron approximation as a default
for handling tied event times, which we set to Breslow to
properly compare performance. To fairly compare, we
also implemented a plaintext variant that uses the New-
ton–Raphson method for optimizing Breslow’s partial
likelihood function. This proves useful as a benchmark to
compare the loss of accuracy with the needed number of
iterations before passing the set threshold.

The reasoning behind benchmarking three implemen-
tations is the following. Differences in accuracy between
‘lib’ and ‘newton’ are caused by the different solvers. Typi-
cally, this shows that the Newton–Raphson solver that we
based our protocol on is a decent solver, but the method
itself is just not optimal. The secure ‘mpc’ implementa-
tion should ideally have identical performance to ‘new-
ton’ as it is based on the same solver. However, both the
fact that ‘mpc’ uses fixed-point representations and that
several approximations were made in the secure imple-
mentation imply that differences may occur. Comparing
‘newton’ and ‘mpc’ gives an experimental indication of
the accuracy impact caused by making the solver secure.

The analysis was performed on the following default
lifelines survival datasets [33] after filtering for missing
values:

•	 Larynx (90 patients, four covariates);
•	 Leukemia (42 patients, three covariates), and;
•	 Lung (167 patients, eight covariates).

The covariates are distributed among the parties (party 1
and 2) as given in Table 3. We set the convergence cri-
terion to 2−11 ≈ 4.8828× 10−4 for all implementations.
The results are presented in Tables 4, 5, and 6. .

For all three datasets, the computed coefficients in
the secure version (‘coef_mpc’) are close to their plain

text variants (‘coef_newton’), and the latter are close to
the ones computed with built-in R solvers (‘coef_lib’).
The same assertion holds for the computed standard
errors, indispensable to calculate p-values and confi-
dence intervals for the estimated coefficients. Note that,
the proposed MPC approach provides p-values that are
approximated up to the fourth digits and therefore suf-
ficient to derive the same statistical conclusions on
the study. We conclude that the secure implementa-
tion achieves a much higher level of confidentiality with
very little impact on accuracy. The difference in terms of
iterations between the built-in R solver and our less opti-
mized, and less complex, solver is just one. This accept-
able difference in convergence is due to the fact that we
do not optimize the step-halving procedure.

System performance
We now evaluate the time needed for the joint servers to
execute the subprotocols and full protocol. The execution
time of a protocol is an aggregate of computation time
(the server is performing computations) and communi-
cation time (the server is sending, receiving or waiting
for messages from other players). We do not distinguish
between these two for two reasons. First, the MPyC
framework that we use executes the protocols asynchro-
nously. This renders distinguishing between and moni-
toring of different modes of operation very delicate and
the framework provides no support for doing so. Sec-
ond, we also ran local experiments on a single server that
simulated a multi-party execution of the protocol. The
results of these experiments were indistinguishable from
the final, distributed set-up. This observation suggests
that, given the network conditions during our distributed
experiments, the communication cost in our distributed
set-up is negligible compared to the computation cost.

To benchmark the system performance of the secure
implementation, we first elaborate upon the system per-
formance of the matrix inverse and the exponentiation
protocols, visualized in Figs. 1 and 2 respectively, as these
protocols dominate the costs of running the overall pro-
tocol. The performance of the entire secure CPH proto-
col is displayed in Fig. 3.

Table 3  Vertical partitioning of covariates per party per dataset

Dataset Covariates party 1 Covariates party 2

Larynx Age Stage_II, Stage_III, Stage_IV

Leukemia Sex LogBC, Rx

Lung Inst, age Sex, ph.ecog, ph.karno, pat.
karno, meal.cal, wt.loss

Page 14 of 18Kamphorst et al. BMC Medical Informatics and Decision Making (2022) 22:49

Analyzing Fig. 1, we observe a performance in line
with the theoretical analysis. We remark that the cur-
rent implementation only supports matrix inversions
of matrix sizes of 2× 2 upto 14 × 14 , due to limitations
within MPyC and Python that limit the maximum size of
a floating point.

Figure 2 demonstrates the practical performance of
the implemented secure exponentiation. It is shown
that it scales linearly in the number of inputs for various
variants of the protocol explained in “Wrapper for trun-
cation” section. We observe that the computational com-
plexity of the non-truncated positive variant is mainly
due to the Taylor series approximation involved in the
secure exponentiation. That part computes several pow-
ers of some term in series (e.g., eight-term approximation
requires six secure multiplications in series). The added
complexity for the other variants are due to the addi-
tional secure comparisons.

The overall experimental performance of our imple-
mentation of the Cox proportional hazards protocol is
illustrated in Fig. 3.

For these experiments, the convergence criterion
was disabled and the number of iterations was fixed to
five for consistency. Note that the secure iterative algo-
rithm needed at most four iterations to convergence
in our experiments with the lifelines survival datasets.
The number of covariates in our experiments is limited
due to the matrix inverse that was discussed before; as
such, we cannot make any rigorous statements about
the experimental scaling properties in that dimension.
Alternatively, the impact of the number of samples on the
computation time reflects the quadratic scaling that we
deduced in the complexity analysis.

Table 4  Larynx dataset. Coefficients (coef) and standard error (se) are listed for each implementation

Convergence was reached in three iterations for ‘lib’, and in four iterations for ‘newton’ and ‘mpc’. The secure implementation ‘mpc’ took 740 seconds to complete

Covariates coef_lib coef_newton coef_mpc se_lib se_newton se_mpc

Age 0.018900 0.018902 0.018906 0.014251 0.014251 0.014228

Stage_II 0.138424 0.138564 0.138550 0.462319 0.462319 0.462293

Stage_III 0.638148 0.638350 0.638260 0.356090 0.356090 0.356112

Stage_IV 1.693331 1.693056 1.692993 0.422179 0.422179 0.422164

Table 5  Leukemia dataset. Coefficients (coef) and standard error (se) are listed for each implementation

Convergence was reached in three iterations for ‘lib’, and in four iterations for ‘newton’ and ‘mpc’. The secure implementation ‘mpc’ took 167 seconds to complete

Covariates coef_lib coef_newton coef_mpc se_lib se_newton se_mpc

Sex 0.263177 0.263171 0.263107 0.449435 0.449435 0.449439

logWBC 1.593608 1.593619 1.593384 0.329995 0.329995 0.329993

Rx 1.390869 1.390877 1.390930 0.456645 0.456645 0.456630

Table 6  Lung dataset

Coefficients (coef) and standard error (se) are listed for each implementation. Convergence was reached in two iterations for ‘lib’, in three iterations for ‘newton’ and
‘mpc’. The secure implementation ‘mpc’ took 3073 seconds to complete

Covariates coef_lib coef_newton coef_mpc se_lib se_newton se_mpc

Inst −0.011852 −0.011861 −0.011856 0.010921 0.010921 0.010930

Age 0.000026 0.000027 −0.000046 0.009779 0.009779 0.009848

Sex −0.251135 −0.251185 −0.251434 0.163212 0.163212 0.163282

ph.ecog 0.615030 0.614995 0.615158 0.204500 0.204500 0.204551

ph.karno 0.023395 0.023392 0.023376 0.010189 0.010189 0.010203

pat.karno −0.009492 −0.009487 −0.009491 0.007027 0.007027 0.007047

meal.cal −0.000080 −0.000080 −0.000076 0.000227 0.000227 0.000227

wt.loss −0.011039 −0.011043 −0.011063 0.006606 0.006606 0.006607

Page 15 of 18Kamphorst et al. BMC Medical Informatics and Decision Making (2022) 22:49 	

Discussion
A comprehensive clinical study generally benefits from
combining patient data from different sources [34, 35].
For example, when linking insurance data with a can-
cer registry, the progression of cancer can be monitored
and reveal how certain treatments can lead to different
chances of survival.

In this paper we propose a secure version of the CPH
model. It is one of the most important statistical tech-
niques in medical research for investigating the asso-
ciation between patient survival time and one or more
explanatory variables. While CPH can show how treat-
ments are associated with survival, it does not explain
what causes the direction of the association. Positive or
negative associations might be explained by treatment
itself, the types of patients the treatment is performed on,
the progression of the disease, or other factors. Hence,
conclusions drawn from a CPH model always require
further scrutiny. This is a common challenge in research
on observational data, but becomes even more important
when this data is collected by different parties. Before
the study commences, all parties need to have sufficient
understanding of each other’s data collection process.
Additionally, exploratory analysis and input validation
tests are needed to rule out any other factors that could
explain differences in survival.

While the techniques discussed in the paper are prom-
ising, actual usage in a real-world scenario can prove to
be quite challenging. Before a joint study commences,
all parties require legal consent and approval to per-
form studies on their (securely) combined data sources.
This generally requires elaborate discussions between
the participating organisations with input from differ-
ent disciplines, including legal, management, researchers
and software developers. Sufficient resources need to be
allocated for having these multilateral, multidisciplinary
discussions as this process cannot and should not be
overstepped.

Still, MPC is an attractive alternative to traditional data
linkages, where the latter generally has much higher risks
of privacy breaches [36]. However, MPC algorithms are
generally still subjected to inherent technical challenges,
particularly with respect to large computational com-
plexity. This is also the case for the algorithm presented
in this paper. The computational burdens of our approach
limits its usage to clinical studies that involve relatively
small sample sizes (such as used in [37–39]), however it
represents an important starting point for future research
on the development MPC algorithms.

Future work
The accuracy of the solution (and possibly the scalabil-
ity) of the protocol through the size of the secret-sharing

Fig. 1  Performance of the matrix inverse protocol. This figures
demonstrates the scalability of the matrix inverse in the number of
covariates (dimension of the matrix). The filled data points are based
on an average of 100 runs per datapoint. The open data points are
based on a single run. We need to perform one matrix inversion
per iteration of the secure CPH protocol. Remark: the current
implementation supports matrix inversions of matrix sizes of 2× 2
upto 14× 14

Fig. 2  Performance of the exponentiation protocol. The data points
are based on an average of 100 runs per datapoint. We observe a
linear scaling in the size of the vector x. Remark: we need n(n− 1)/2
invocations of the exponentiation, where n is the number of sample
(or patients), resulting in quadratic scaling in the number of samples.
A more elaborate explanation of the legend; Green: exponents are
assumed to be in the interval [0, 12]. No truncation is performed to
enforce this, resulting in zero secure comparisons to perform the
exponentiation; Orange: exponents are assumed to be in the interval
[−12, 12] . No truncation is performed to enforce this, however one
secure comparison needed to deal with negative exponents; Blue:
given an interval [−x , y] (e.g., [−12, 12] ), all exponents are truncated
to fit in this range to prevent overflows. Two secure comparisons are
needed to achieve this

Page 16 of 18Kamphorst et al. BMC Medical Informatics and Decision Making (2022) 22:49

modulus suffers from the limitation of MPyC to fixed-
point arithmetic. Once floating-point arithmetic becomes
available in the MPyC framework, we might be able to
significantly improve the accuracy (and scalability) of
the solution. Furthermore, floating-point arithmetic will
greatly improve memory usage of the matrix inverse sub-
protocol, we expect that the maximal dimension of the
matrix to invert is no longer bounded by 14 × 14.

We can greatly reduce the computation time of the
overall protocol by parallelizing the exponentiations that
need to be performed in every iteration. Parallelization is
currently not supported in the MPyC framework. Low-
hanging fruit would be to only parallelize the generation
of randomness needed in the exponentiation (sub)Pro-
tocol 3. An alternative could be to precompute this ran-
domness before execution of the protocol.

Finally, it would be interesting to investigate solutions
with slightly different accuracy-efficiency-privacy trade-
offs. For example, one could be interested in a more effi-
cient and scalable matrix inversion protocol even if it
provides weaker privacy guarantees.

Conclusions
A secure version of the Cox proportional hazards model
enables researchers to study survival probabilities of
patients while taking into account covariates over dis-
tributed databases. Data from multiple institutions no
longer has to be shared or combined to perform a com-
prehensive study of patient survival. This provides strong
protection of patient data while enabling novel forms of
research. Our secure version of the CPH allows for more
information to be included in clinical studies, which

potentially can lead to new insights on which factors
impact the survival of patients.

The secure solution is comparable with the plaintext
solver in terms of accuracy and convergence speed. The
computation time is considerably larger, however the
theoretical complexity is still cubic in the number of
covariates, and quadratic in the number of subjects.

In conclusion, the solution in this paper can enable
organisations to safely perform parametric survival anal-
ysis on vertically-distributed medical data, while guaran-
teeing a high level of security and privacy.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12911-​022-​01771-3.

Additional file 1: Exponentiation approximation. It describes the details
of the MacLaurin series approximation in “Non-integer exponent” section

Additional file 2: Matrix inversion background. It briefly introduces core
components of the secure matrix inversion protocol by Blom et al. [31], as
referred to in “Matrix inverse protocol” section.

Acknowledgements
The authors would like to thank Daniël Worm (TNO) and Gijs Geleijnse (IKNL)
for initiating, organizing and guiding this joint research. Also, we thank Frank
Martin (IKNL) for his efforts in setting up the infrastructure for experiments.

Authors’ contributions
Bart Kamphorst and Thomas Rooijakkers contributed to the design, imple-
mentation and experiments of the privacy-preserving CPH solution and to the
writing of this manuscript. Thijs Veugen was in the lead of the cryptographic
design of the privacy-preserving CPH solution and contributed to the writing
of this manuscript. Matteo Cellamare and Daan Knoors contributed to the use
case definition and requirements, the experimental set-up and the writing of
this manuscript. All authors read and approved the final manuscript.

Fig. 3  Performance of the overall Cox proportional hazards protocol, experimental data was gathered by performing a single run per data point.
The number of iterations per run was fixed to five. The visualized duration is given in minutes per iteration

https://doi.org/10.1186/s12911-022-01771-3
https://doi.org/10.1186/s12911-022-01771-3

Page 17 of 18Kamphorst et al. BMC Medical Informatics and Decision Making (2022) 22:49 	

Funding
The research activities that have led to this paper were performed in the
project CONVINCED, a research collaboration between IKNL and TNO, and
the project SELECTED. These projects were partly funded by TNOs Appl.AI
program and the Netherlands AI Coalition.

Availability of data and materials
The datasets generated and/or analysed during the current study are available
in the Lifelines repository [33], https://​github.​com/​CamDa​vidso​nPilon/​lifel​
ines/​tree/​97c45​5d13c​f2aab​a5b99​abd6b​01476​ce441​5b6d3/​lifel​ines/​datas​ets.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Cyber Security and Robustness, Netherlands Organisation for Applied
Scientific Research, The Hague, The Netherlands. 2 Research and Develop-
ment, Netherlands Comprehensive Cancer Organisation, Eindhoven, The
Netherlands. 3 Cryptology, Centrum Wiskunde and Informatica, Amsterdam,
The Netherlands.

Received: 8 June 2021 Accepted: 20 January 2022

References
	1.	 Hippisley-Cox J, Coupland C. Development and validation of risk predic-

tion equations to estimate survival in patients with colorectal cancer:
cohort study. BMJ. 2017. https://​doi.​org/​10.​1136/​bmj.​j2497.

	2.	 Bastiaannet E, Sampieri K, Dekkers OM, de Craen AJM, van Herk-Sukel
MPP, Lemmens V, van den Broek CBM, Coebergh JW, Herings RMC, van de
Velde CJH, Fodde R, Liefers GJ. Use of Aspirin postdiagnosis improves sur-
vival for colon cancer patients. Br J Cancer. 2012;106(9):1564–70. https://​
doi.​org/​10.​1038/​bjc.​2012.​101.

	3.	 Geleijnse G, Chiang RC-J, Sieswerda M, Schuurman M, Lee KC, van Soest
J, Dekker A, Lee W-C, Verbeek XAAM. Prognostic factors analysis for oral
cavity cancer survival in the Netherlands and Taiwan using a privacy-
preserving federated infrastructure. Sci Rep. 2020;10(1):20526. https://​doi.​
org/​10.​1038/​s41598-​020-​77476-2.

	4.	 ...Deist TM, Dankers FJWM, Ojha P, Scott Marshall M, Janssen T, Faivre-Finn
C, Masciocchi C, Valentini V, Wang J, Chen J, Zhang Z, Spezi E, Button
M, Jan Nuyttens J, Vernhout R, van Soest J, Jochems A, Monshouwer R,
Bussink J, Price G, Lambin P, Dekker A. Distributed learning on 20 000+
lung cancer patients—the Personal Health Train. Radiother Oncol.
2020;144:189–200. https://​doi.​org/​10.​1016/j.​radonc.​2019.​11.​019.

	5.	 Zhu L, Liu Z, Han S. Deep leakage from gradients. 2019. arXiv:​ 1906.​08935.
	6.	 Cox DR. Regression models and life-tables. J R Stat Soc Ser B (Methodol).

1972;34(2):187–202. https://​doi.​org/​10.​1111/j.​2517-​6161.​1972.​tb008​99.x.
	7.	 Breslow NE. Analysis of survival data under the proportional hazards

model. Int Stat Rev. 1975;43(1):45–57. https://​doi.​org/​10.​2307/​14026​59.
arXiv:​ 14026​59.

	8.	 Yao AC. Protocols for secure computations (extended abstract). In: 23rd
annual symposium on foundations of computer science, Chicago, Illinois,
USA, 3–5 November 1982, pp. 160–164. IEEE Computer Society (1982).
https://​doi.​org/​10.​1109/​SFCS.​1982.​38.

	9.	 Damgård I, Pastro V, Smart N, Zakarias S. Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini R, Canetti R, editors.
Advances in cryptology—CRYPTO 2012. Berlin: Springer; 2012. p. 643–62.

	10.	 Keller M, Orsini E, Scholl P. Mascot: faster malicious arithmetic secure
computation with oblivious transfer. In: Proceedings of the 2016 ACM

SIGSAC conference on computer and communications security. CCS ’16,
pp. 830–842. Association for Computing Machinery, New York, NY, USA
2016. https://​doi.​org/​10.​1145/​29767​49.​29783​57.

	11.	 Schoenmakers B. MPyC: secure multiparty computation in python. ver-
sion 0.7. https://​github.​com/​lschoe/​mpyc.

	12.	 Shamir A. How to share a secret. Commun ACM. 1979;22(11):612–3.
https://​doi.​org/​10.​1145/​359168.​359176.

	13.	 Shi H, Jiang C, Dai W, Jiang X, Tang Y, Ohno-Machado L, Wang S. Secure
multi-party computation grid logistic regression (SMAC-GLORE).
BMC Med Inform Decis Mak. 2016;16(3):89. https://​doi.​org/​10.​1186/​
s12911-​016-​0316-1.

	14.	 Yu S, Fung G, Rosales R, Krishnan S, Rao RB, Dehing-Oberije C, Lambin P.
Privacy-preserving cox regression for survival analysis. In: Proceedings of
the 14th ACM SIGKDD international conference on knowledge discovery
and data mining. KDD ’08, pp. 1034–1042. Association for Computing
Machinery, New York, NY, USA. 2008. https://​doi.​org/​10.​1145/​14018​90.​
14020​13.

	15.	 Lu C-L, Wang S, Ji Z, Wu Y, Xiong L, Jiang X, Ohno-Machado L. WebDISCO:
a web service for distributed cox model learning without patient-level
data sharing. J Am Med Inform Assoc. 2015;22(6):1212–9. https://​doi.​org/​
10.​1093/​jamia/​ocv083.

	16.	 Dai W, Jiang X, Bonomi L, Li Y, Xiong H, Ohno-Machado L. VERTICOX: Verti-
cally distributed cox proportional hazards model using the alternating
direction method of multipliers. IEEE Trans Knowl Data Eng. 2020. https://​
doi.​org/​10.​1109/​TKDE.​2020.​29893​01.

	17.	 Domadiya N, Rao UP. Privacy preserving distributed association rule min-
ing approach on vertically partitioned healthcare data. Procedia Comput
Sci. 2019;148:303–12. https://​doi.​org/​10.​1016/j.​procs.​2019.​01.​023 (The
second international conference on intelligent computing in data sci-
ences, ICDS2018).

	18.	 Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and
statistical learning via the alternating direction method of multipliers, vol.
3, no. 1, pp. 1–122. 2010.https://​doi.​org/​10.​1561/​22000​00016 (Accessed
12 Aug 2020).

	19.	 O’Keefe CM, Sparks RS, McAullay D, Loong B. Confidentialising survival
analysis output in a remote data access system. J Priv Confid. 2012.
https://​doi.​org/​10.​29012/​jpc.​v4i1.​614.

	20.	 Nguyên TT, Hui SC. Differentially private regression for discrete-time
survival analysis. In: Proceedings of the 2017 ACM on conference on
information and knowledge management. CIKM ’17, pp. 1199–1208.
Association for Computing Machinery, New York, NY, USA. 2017. https://​
doi.​org/​10.​1145/​31328​47.​31329​28.

	21.	 Nguyen TT. Differential privacy for survival analysis and user data collec-
tion. Ph.D. Thesis, Nanyang Technological University. 2019. https://​doi.​
org/​10.​32657/​10220/​48212.

	22.	 Dwork C, Roth A. The algorithmic foundations of differential privacy.
Found Trends Theor Comput. 2013;9(3–4):211–407. https://​doi.​org/​10.​
1561/​04000​00042.

	23.	 van Haaften W, Sangers A, van Engers T, Djafari S. Coping with the general
data protection regulation: anonymization through multi-party computa-
tion technology. In: IRIS/SCIS conference 2020.

	24.	 Minder CE, Bednarski T. A robust method for proportional hazards regres-
sion. Stat Med. 1996;15(10):1033–47.

	25.	 Zhang J, Chen L, Bach A, Courteau J, Vanasse A, Wang S. Sequential
representation of clinical data for full-fitting survival prediction. In: 2017
31st international conference on advanced information networking and
applications workshops (WAINA), pp 503–508; 2017. IEEE.

	26.	 Wang Y, Hong C, Palmer N, Di Q, Schwartz J, Kohane I, Cai T. A fast divide-
and-conquer sparse Cox regression (2019-09-23). https://​doi.​org/​10.​
1093/​biost​atist​ics/​kxz036. Accessed 10 Aug 2020.

	27.	 Thissen KKK. Achieving differential privacy in secure multiparty computa-
tion. Master’s Thesis, Technische Universiteit Eindhoven, Eindhoven; 2019.

	28.	 Hart JF. Computer approximations. Malabar: Krieger Publishing Co. Inc;
1978.

	29.	 de Hoogh SJA, van Tilborg H. Design of large scale applications of secure
multiparty computation : Secure linear programming. Ph.D. Thesis, Tech-
nische Universiteit Eindhoven. 2012. https://​doi.​org/​10.​6100/​ir735​328.

	30.	 Veugen T. Efficient coding for secure computing with additively-homo-
morphic encrypted data. Int J Appl Cryptogr. 2020;4(1):1–15. https://​doi.​
org/​10.​1504/​IJACT.​2020.​107160.

https://github.com/CamDavidsonPilon/lifelines/tree/97c455d13cf2aaba5b99abd6b01476ce4415b6d3/lifelines/datasets
https://github.com/CamDavidsonPilon/lifelines/tree/97c455d13cf2aaba5b99abd6b01476ce4415b6d3/lifelines/datasets
https://doi.org/10.1136/bmj.j2497
https://doi.org/10.1038/bjc.2012.101
https://doi.org/10.1038/bjc.2012.101
https://doi.org/10.1038/s41598-020-77476-2
https://doi.org/10.1038/s41598-020-77476-2
https://doi.org/10.1016/j.radonc.2019.11.019
http://arxiv.org/abs/1906.08935
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.2307/1402659
http://arxiv.org/abs/1402659
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1145/2976749.2978357
https://github.com/lschoe/mpyc
https://doi.org/10.1145/359168.359176
https://doi.org/10.1186/s12911-016-0316-1
https://doi.org/10.1186/s12911-016-0316-1
https://doi.org/10.1145/1401890.1402013
https://doi.org/10.1145/1401890.1402013
https://doi.org/10.1093/jamia/ocv083
https://doi.org/10.1093/jamia/ocv083
https://doi.org/10.1109/TKDE.2020.2989301
https://doi.org/10.1109/TKDE.2020.2989301
https://doi.org/10.1016/j.procs.2019.01.023
https://doi.org/10.1561/2200000016
https://doi.org/10.29012/jpc.v4i1.614
https://doi.org/10.1145/3132847.3132928
https://doi.org/10.1145/3132847.3132928
https://doi.org/10.32657/10220/48212
https://doi.org/10.32657/10220/48212
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1093/biostatistics/kxz036
https://doi.org/10.1093/biostatistics/kxz036
https://doi.org/10.6100/ir735328
https://doi.org/10.1504/IJACT.2020.107160
https://doi.org/10.1504/IJACT.2020.107160

Page 18 of 18Kamphorst et al. BMC Medical Informatics and Decision Making (2022) 22:49

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	31.	 Blom F, Bouman N, Schoenmakers B, Vreede N. Efficient secure ridge
regression from randomized gaussian elimination. IACR Cryptol. ePrint
Arch. 2019.

	32.	 Therneau TM. A package for survival analysis in R. version 2.41-3. https://​
CRAN.R-​proje​ct.​org/​packa​ge=​survi​val.

	33.	 Davidson-Pilon C, Kalderstam J, Jacobson N, sean-reed Kuhn B, Zivich
P, Williamson M, AbdealiJK Datta D, Fiore-Gartland A, Parij A, WIlson D,
Gabriel Moneda L, Moncada-Torres A, Stark K, Gadgil H, Jona Singaravelan
K, Besson L, Peña MS, Anton S, Klintberg A, GrowthJeff Noorbakhsh J,
Begun M, Kumar R, Hussey S, Golland D. jlim13: CamDavidsonPilon/life-
lines: V0.25.4. https://​doi.​org/​10.​5281/​zenodo.​40027​77.

	34.	 Biro S, Williamson T, Leggett JA, Barber D, Morkem R, Moore K, Belanger
P, Mosley B, Janssen I. Utility of linking primary care electronic medical
records with Canadian census data to study the determinants of chronic
disease: an example based on socioeconomic status and obesity. BMC
Med Inform Decis mak. 2016;16(1):1–8.

	35.	 Movsas A, Ibrahim R, Elshaikh MA, Lamerato L, Lu M, Sitarik A, Pradhan
D, Walker EM, Stricker H, Freytag SO, et al. Do sociodemographic factors
influence outcome in prostate cancer patients treated with external
beam radiation therapy? Am J Clin Oncol. 2016;39(6):563–7.

	36.	 El Emam K, Buckeridge D, Tamblyn R, Neisa A, Jonker E, Verma A. The
re-identification risk of Canadians from longitudinal demographics. BMC
Med Inform Decis Mak. 2011;11(1):1–12.

	37.	 Wilkins RM, Pritchard DJ, Omer EB Jr, Unni KK. Ewing’s sarcoma of bone.
experience with 140 patients. Cancer. 1986;58(11):2551–5.

	38.	 Stiff P, Bayer R, Kerger C, Potkul R, Malhotra D, Peace D, Smith D, Fisher S.
High-dose chemotherapy with autologous transplantation for persistent/
relapsed ovarian cancer: a multivariate analysis of survival for 100 con-
secutively treated patients. J Clin Oncol. 1997;15(4):1309–17.

	39.	 Ikeda K, Kumada H, Saitoh S, Arase Y, Chayama K. Effect of repeated
transcatheter arterial embolization on the survival time in patients with
hepatocellular carcinoma. An analysis by the cox proportional hazard
model. Cancer. 1991;68(10):2150–4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://doi.org/10.5281/zenodo.4002777

	Accurate training of the Cox proportional hazards model on vertically-partitioned data while preserving privacy
	Abstract
	Background:
	Methods:
	Results:
	Conclusions:

	Background
	Cox proportional hazards
	Secure multi-party computation
	Related work

	Methods
	Participating parties and their data
	Optimizing Breslow’s approximation
	Secure CPH protocol
	Overview secure CPH protocol
	Shared information
	Data set-up
	Secure inner products
	Secure exponentiations
	Secure gradient and Hessian matrix
	Updating the model parameters
	Stopping criterion

	Secure exponentiation protocol
	Reduce input space
	Split exponent
	Integer exponent
	Non-integer exponent
	Wrapper for truncation

	Matrix inverse protocol
	Matrix inverse for integers
	Remarks about the MPyC implementation
	Matrix inverse for fixed points

	Theoretical performance

	Results and discussion
	MPC platform
	Security analysis
	Experiment
	Accuracy
	System performance

	Discussion
	Future work

	Conclusions
	Acknowledgements
	References

